Dual Population Genetic Algorithm

نویسنده

  • A. J. Umbarkar
چکیده

The 0/1 Knapsack Problem is an optimization problem solved using various soft computing methods. The solution to the 0/1 Knapsack Problem (KP) can be viewed as the result of a sequence of decisions. Simple Genetic Algorithm (SGA) effectively solves knapsack problem for large data set. But it has problems like premature convergence and population diversity. Dual Population Genetic Algorithm (DPGA) is an improved version of Genetic Algorithm (GA) with the solution to above problems. This paper proposes Dual Population GA for solving 0/1 knapsack Problem. Experimental results of knapsack on SGA and DPGA are compared on standard as well as random data sets. The experimental result shows DPGA performs better than knapsack on SGA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Population Genetic Algorithm for Solving Constrained Optimization Problems

Dual Population Genetic Algorithm is an effective optimization algorithm that provides additional diversity to the main population. It addresses the premature convergence problem as well as the diversity problem associated with Genetic Algorithm. Thus it restricts their individuals to be trapped in the local optima. This paper proposes Dual Population Genetic Algorithm for solving Constrained O...

متن کامل

Genetic Algorithms: From Hegemony to Chaos

Genetic algorithms are known to be convergent algorithms, with the final population tending to become homogeneous. In this paper we show that it is possible to exhibit complex dynamics for a genetic algorithm by slightly modifying the canonical algorithm. Indeed, adding a metalevel in the interpretation of the individuals, associated with a coupling between individuals, gives rise to periodic o...

متن کامل

OpenMP Dual Population Genetic Algorithm for Solving Constrained Optimization Problems

Dual Population Genetic Algorithm is an effective optimization algorithm that provides additional diversity to the main population. It deals with the premature convergence problem as well as the diversity problem associated with Genetic Algorithm. But dual population introduces additional search space that increases time required to find an optimal solution. This large scale search space proble...

متن کامل

Solving random inverse heat conduction problems using PSO and genetic algorithms

The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...

متن کامل

GPGPU based Dual Population Genetic Algorithm for solving Constrained Optimization Problem

Dual Population Genetic Algorithm is a variant of Genetic Algorithm that provides additional diversity to the main population. It covers the premature convergence problem as well as the diversity problem associated with Genetic Algorithm. But also its additional population introduces large search space that increases time required to find an optimal solution. This large scale search space probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014